If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+7x-9=0
a = 10; b = 7; c = -9;
Δ = b2-4ac
Δ = 72-4·10·(-9)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{409}}{2*10}=\frac{-7-\sqrt{409}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{409}}{2*10}=\frac{-7+\sqrt{409}}{20} $
| 5/2x-1/2x-2=4 | | t=-5.2 | | 6x-10+3x-7=180 | | (2x+49)=(7x-6) | | x3+16x-8x^2=0 | | x+12=7/6(x) | | 6x-10)+(3x-7)=180 | | 1/5(-15k+75)=8+12k | | −27=−0.6k | | (2x)+4x-10)+(3x-7)=180 | | 1/3=a=5/4 | | y/−4=1/8 | | q/3+17=19 | | 1/3x=5/4 | | -68=-0.8k | | 4+-3q=1 | | p2=−15.1 | | 2x-0.625=×+1.25 | | y=0^2-5 | | -2.5n+1/2=-8.3 | | 15+10x=865 | | 35+8m=139 | | 25^2x-3=125^x+1 | | (3/2x)+(2/5)=(7/5x) | | 36-x+9x-26=180 | | 15+10x=515 | | 1=-z+-8 | | 1,4x-2,7=3-(x-1,5) | | 2x-6.5=x+1.1 | | 7x^2+14x=-9+3x^2+5x | | 90-v=82 | | 10/8=h=9/3-2 |